SignWriting in an ASCII World!

by Stephen E Slevinski Jr

It's an ASCII World!

A. Starting Point

1. ASCII
2. Regular Expressions
3. Token Patterns
4. Hexadecimal
B. Definition
5. Symbol Keys
6. Numbers
7. Formal SignWriting
8. Query Strings

Starting Point

American Standard Code for Information Interchange.

ASCII is the basis for text processing and standard definition.

Unicode is ASCII plus additional characters.

ASCII is UTF-8, character for character.

ASCII will outlive Unicode.
ASCII

Binary	Oct	Dec	Hex	Glyph	Binary	Oct	Dec	Hex	Glyph	Binary	Oct	Dec	Hex	Glyph
0100000	040	32	20	(space)	1000000	100	64	40	@	1100000	140	96	60	-
0100001	041	33	21	$!$	1000001	101	65	41	A	1100001	141	97	61	a
0100010	042	34	22	*	1000010	102	66	42	B	1100010	142	98	62	b
0100011	043	35	23	\#	1000011	103	67	43	C	1100011	143	99	63	c
0100100	044	36	24	\$	1000100	104	68	44	D	1100100	144	100	64	d
0100101	045	37	25	\%	1000101	105	69	45	E	1100101	145	101	65	e
0100110	046	38	26	\&	1000110	106	70	46	F	1100110	146	102	66	f
0100111	047	39	27	'	1000111	107	71	47	G	1100111	147	103	67	g
0101000	050	40	28	$($	1001000	110	72	48	H	1101000	150	104	68	h
0101001	051	41	29)	1001001	111	73	49	1	1101001	151	105	69	i
0101010	052	42	2 A	-	1001010	112	74	4A	J	1101010	152	106	6 A	j
0101011	053	43	2 B	+	1001011	113	75	4B	K	1101011	153	107	6B	k
0101100	054	44	2 C	,	1001100	114	76	4 C	L	1101100	154	108	6C	1
0101101	055	45	2 D	-	1001101	115	77	4 D	M	1101101	155	109	6D	m
0101110	056	46	2 E	.	1001110	116	78	4E	N	1101110	156	110	6E	n
0101111	057	47	2 F	f	1001111	117	79	4F	\bigcirc	1101111	157	111	6 F	\bigcirc
0110000	060	48	30	0	1010000	120	80	50	P	1110000	160	112	70	p
	061	49	31	1	1010001	121	81	51	Q	1110001				q
0110010	062	50	32	2	1010010	122	82	52	R	1110010	162	114	72	r
0110011	063	51	33	3	1010011	123	83	53	S	1110011	163	115	73	s
0110100	064	52	34	4	1010100	124	84	54	T	1110100	164	116	74	t
0110101	065	53	35	5	1010101	125	85	55	U	1110101	165	117	75	u
0110110	066	54	36	6	1010110	126	86	56	V	1110110	166	118	76	v
0110111	067	55	37	7	1010111	127	87	57	w	1110111	167	119	77	w
0111000	070	56	38	8	1011000	130	88	58	X	1111000	170	120	78	x
0111001	071	57	39	9	1011001	131	89	59	Y	1111001	171	121	79	y
0111010	072	58	3 A	:	1011010	132	90	5 A	Z	1111010	172	122	7A	z
0111011	073	59	3B	;	1011011	133	91	5B	[1111011	173	123	7B	\{
0111100	074	60	3 C	$<$	1011100	134	92	5 C	1	1111100	174	124	7 C	1
0111101	075	61	3D	=	1011101	135	93	5D]	1111101	175	125	7D	\}
0111110	076	62	3 E	>	1011110	136	94	5 E	\wedge	1111110	176	126	7E	\sim
0111111	077	63	3 F	?	1011111	137	95	5 F	-					

Starting Point

A regular expression is used to examine text and identify strings that match a stated pattern.

It is faster to recognize a string with regular expressions then to analyze a string with a routine.

https://xkcd.com/208/

Starting Point

Character
*
Description
Match a character
0 or more times
Match a character 1 or more times

Match a character
0 or 1 times

Match a character explicit number times

Regex

Example
ABC* matches
$A B, A B C, A B C C, \ldots$
ABC+ matches
$A B C, A B C C, A B C C C, \ldots$
ABC? matches
$A B$ or $A B C$
AB\{2\} matches
$A B B$

Starting Point

Character
$\left[\begin{array}{l}\text { Match any character } \\ \text { from a list }\end{array}\right.$
()
(|)
$[-] \quad \begin{aligned} & \text { Match any character } \\ & \text { in a range }\end{aligned}$
Description

Create a group for matching

Match one of several alternatives

Regex

Example
[ABC] matches
A, B, or C
[A-C] matches A, B, or C

A(BC)+ matches
$A B C, A B C B C, A B C B C B C, \ldots$
(ABIBCICD) matches
$A B, B C$, or $C D$

Starting Point

Regex

Find a number between 122 and 455

Step 1) 10's don't match and the min 1 's are not zero (last number to 9)

12[2-9]
122 to 129

Step 2) Bring up the 10's if hundreds are different

1[3-9][0-9] 130 to 199

Step 3) Bring up the 100's if different

Step 4) Bring up the 10's

Step 5) Bring up the 1's

Regex
Matches

Final Regex (12[1-9]|1[3-9][0-9]|[2-3][0-9][0-9]|4[0-4][0-9]|45[0-5])
Test Regex Online

Starting Point Token Patterns

$A B M B$
 \longrightarrow Structural Markers

\longrightarrow Symbol Bases

\longrightarrow Symbol Modifiers

Numbers

A	Sequence Marker
B	SignBox Marker
L	Left Lane Marker
M	Middle Lane Marker
R	Right Lane Marker
W	Writing Base Symbol
S	Sequence Base Symbol
P	Punctuation Base Symbol
i	Fill Modifier
o	Rotation Modifier
n	Number

Writing Symbol

Cartesian
 Coordinate

Starting Point Character Value

x0	0
$\times 1$	1
$\times 2$	2
$\times 3$	3
$\times 3$	4
$\times 4$	5
$\times 5$	5
$\times 6$	6
$\times 7$	7
x8	8
x9	9
XA	10
XB	11
XC	12
XD	13
XE	14
XF	15

Hexadecimal

String
Value

Decimal Value	$\times 00$	0
Standard numbers that we use are base 10, using only the 0 thru 9 .	$\times 10$	16
	$\times 20$	32
	x30	48
	$\times 40$	64
	$\times 50$	80
	$\times 60$	96
Hexadecimal	$\times 70$	112
Prefixed with an ' x ' hexadecimal characters and strings are base 16, using 0 thru 9 and A thru F.	$\times 80$	128
	$\times 90$	144
	xA0	160
	xB0	176
	xC0	192
	xD0	208
	xE0	244
	xFF	255

Definition

Symbol Key

Symbol keys are used to identify each of the 37,811 symbols of the ISWA 2010.

Writing symbol

W	i	0

Sequence symbol

s	i	0

P	i	o

Definition

Symbol Key

Symbol keys are 6 characters long.

Regex
S[123][0-9a-f]\{2\}[0-5][0-9a-f]
http://signbank.org/SignWriting Character Viewer.htm|\#?set=key

Definition

Numbers

The number characters encode the ruler principle for 2-dimensions.

Numbers range from 250 to 749, with 500 being the center.

Cartesian Coordinates are built using two tokens.

1. Number of " n "
2. Number of " n "

250x749 $\frac{1}{250} 749$

$(250,749)$

Top-Left Coordinate of symbol

Definition

Description

Numbers are 3 characters long.

Coordinates are 7 characters long.

Example

500
[0-9]\{3\}
$[0-9]\{3\} \times[0-9]\{3\}$

Regex for explicit number between 250 and 749 (2[5-9][0-9]|[3-6][0-9]\{2\}|7[0-4][0-9])

Definition Formal SignWriting

According to Wikipedia, "In mathematics, computer science, and linguistics, a formal language is a set of strings of symbols that may be constrained by rules that are specific to it."

Sign as Word

- Mathematical ASCII name
- Optional time for sorting
- Mandatory space for visual
https://tools.ietf.org/html/draft-slevinski-signwriting-text-05\#section-2

Definition Formal SignWriting

Spatial symbol

Identifies a specific symbol with coordinate information.

Spatial symbols are built using five tokens.

Used in the
Spatial Signbox

w	i	o	n	n

1. Symbol Base of " w "
2. Fill Modifier of "i"
3. Rotation Modifier of "o"
4. Number of " n "
5. Number of " n "

Regex
S[123][0-9a-f]\{2\}[0-5][0-9a-f][0-9]\{3\}x[0-9]\{3\}

Definition Formal SignWriting

Spatial SignBox

A cluster of symbols used in 2-dimensions

W

Regex for Token Description [BLMR]nn(wionn)*

Regex for Formal SignWriting
[BLMR] $[[0-9]\{3\} \times[0-9]\{3\})(S[123][0-9 a-f]\{2\}[0-5][0-9 a-f][0-9]\{3\} \times[0-9]\{3\})^{*}$

Definition Formal SignWriting

Temporal Prefix

An optional ordered list of symbols used for sorting.

Regex for Token Description
 (A([ws]io)+)?

Regex for Formal SignWriting (A(S[123][0-9a-f]\{2\}[0-5][0-9a-f])+)?

Definition Formal SignWriting

Definition

Query String

The query string is a lite ASCII markup similar to Formal SignWriting.

Query String for all signs

Query strings are used to search Formal SignWriting.

Formal SignWriting can be converted into several different query string, depending on the search parameters.

Query String for sortable signs

Definition

Query String

Query Strings

15 to 50 times expansion

Regular Expressions

process million of characters per second

Formal SignWriting

search results

Definition
 Query String

The query string is a concise representation for a much larger and detailed set of regular expressions.

When a query string returns more than one regular expression, a filter and repeat step is required.

QS10000S20500

(A(S[123][0-9a-f] $\{2\}[0-5][0-9 a-f])+$)?
[BLMR] $[[0-9]\{3\} \times[0-9]\{3\})(S[123][0-9 a-f]$ $\{2\}[0-5][0-9 a-f][0-9]\{3\} \times[0-9]$
$\{3\})^{*}$ S10000 $[0-9]\{3\} \times[0-9]\{3\}(S[123][0-9 a-$ f]\{2\}[0-5][0-9a-f][0-9]\{3\}×[0-9]\{3\})*
(A(S[123][0-9a-ff]\{2][0-5][0-9a-ff)+)?
[BLMR](%5B0-9%5D%7B3%7Dx%5B0-9%5D%7B3%7D)(S[123][0-9a-f] $\{2\}[0-5][0-9 a-f][0-9]\{3\} \times[0-9]$
$\{3\})^{\star}$ S20500[0-9] \{3]×[0-9] \{3\}(S[123][0-9a-f]\{2\}[0-5][0-9a-f][0-9]\{3\}×[0-9]\{3\})*

Definition
 Query String

Two main sections of a query string

Temporal Sequence Searching

1-Dimensional order

Spatial SignBox Searching

2-Dimensional order

Both sections use the same definition for a symbol or a range.

Search Symbol

$$
S[123][0-9 a-f]\{2\}[0-5 u][0-9 a-f u]
$$

Search Range

$$
R[123][0-9 a-f]\{2\} t[123][0-9 a-f]\{2\}
$$

Definition
 Query String

Temporal Sequence Searching

It is possible to specify the start order of the temporal sequence by identifying a series of symbols and/or ranges.

Q((A(S[123][0-9a-f]\{2\}[0-5u][0-9a-fu]IR[123][0-9a-f]\{2\}t[123][0-9a-f]\{2\})+)?T)?

Symbol Search

Fill and Rotation values of 'u' represent unknown and allow all possible values.

Range Search

Finds all symbols
between two specified
symbol bases

| w | s |
| :--- | :--- | S

Definition

Spatial SignBox Searching

Allowable distance from
specified coordinates

It is possible to specify one or more symbols (or ranges of symbols) that must be included in the spatial SignBox with optional coordinates for each symbol or range.

Optional Variance

Q(S[123][0-9a-f]\{2\}[0-5u][0-9a-fu](%5B0-9%5D%7B3%7Dx%5B0-9%5D%7B3%7D)?IR[123][0-9a-f]\{2\}t[123][0-9a-f]\{2\}([0-9]\{3\}x[0-9]\{3\})?)*(V[0-9]+)?

Symbol Search

Fill and Rotation values of 'u' represent unknown and allow all possible values.

n n

Optional Coordinates

w	i	o

Specified coordinates will limit the search results for the previous symbol.

Range Search

Finds all symbols
between two specified
symbol bases

W	W

Optional Coordinates

Specified coordinates will limit the search results for the previous range.

Examples

Query

QS18711

Query String

Description
Finds signs that use an exact symbol in the SignBox

Finds signs that use a general base symbol in the SignBox with any fill or rotation.

Results

QS187uu

b
-

Examples

Query

QS10a11532×445

Query String

Description

Finds signs that use an exact symbol near a specific coordinate in the sign box

Results

QS10auu491×526
Finds signs that use a general base symbol near a specific coordinate in the SignBox with any fill or rotation.

Examples

Query

QAS14c12S10018T

Finds signs with a temporal
sequence that starts with
Finds signs with a tempor
sequence that starts with specified symbols

Description

Finds signs with a temporal sequence that starts with the ordered base symbols and any fills or rotations

Results

Examples
 Query String

For mixed searching, the Temporal Sequence searching is defined first.

QAS100uuS100uuTS20500470x470

Temporal Sequence
Searching

Temporal Sequence starts with any two index hand shapes

Spatial SignBox Searching

Contact star is used near coordinate $(470,470)$

