
Title: Computer support for Signwriting written form of sign language

Author: Guylhem Aznar <lrec@externe.net>, Patrice Dalle <dalle@irit.fr> TCI
team, IRIT lab <www.irit.fr>

Keywords: Sign language, Computer, writing, Signwriting, Unicode, Linux

Abstract: Signwriting's thesaurus is very large. It consists of 425 basic symbols,
split in 60 groups from 10 categories. Each basic symbol can have 4 different
representations, 6 different fillings and 16 different spatial rotations.

While signwriting is more and more used by the deaf community, it currently lacks
a complete and platform neutral computer support to let signwriters share
documents regardless the applications and the underlying operating system they
may be using. Based on previous research, various propositions have been made,
resulting in multiple incompatible systems.

The main problem currently is the lack of a consistent basis upon which
compatibility could be built : the most advanced and used system, SWML [1], is
multiplatform thanks to Java but requires dedicated applications like the previous
attempts. Moreover, the use of XML based representation requires dozens of lines
of code for each symbol, resulting in oversized files which can not be parsed, used
or read with standard tools. XML linking to bitmap pictures for on-screen
representation prevents the integration of a real font system, needed for a true
portability, and cause scalability problems. Moreover, like previous systems,
SWML still comes with a complex user interface, a little easier to learn but slower,
symbols being entered via the mouse.

Even if this advanced approach helped the signwriter community, replacing the
manual insertion of GIF graphic files for each symbol, at the moment, the
signwriting community must revert to screenshots and pictures to ensure
documents can be shared and read, resulting in little reusability for both users and
researchers, and low computational possibilities worsened by the absence of
signwriting optical recognition software.

Guylhem Aznar, a first year medical resident and a PhD student in Computer
Science from Pr. Patrice Dalle TCI team in IRIT (Toulouse, France), is proposing a
unicode based representation for Signwriting with a suite of free software tools
running on GNU/Linux but also supporting non-free operating systems.

This approach based on unicode is putting a strong emphasis on facilitating
communication and compatibility through a unicode reconstruction engine.
Usage and computer entry are also made simpler thanks to different possibilities
of human interaction : keyboard, mouse and sensitive area (handwriting) support,
which all result in the same unicode-text output. This output can then be shared,
reused or studied easily.

The choice of unicode over XML facilitates integration in existing software.

The system works in layers : the entry layer, the keycode layer, the unicode layer,
the rendering layer and the font layer.

These layers are independent and therefore easy to adapt and improve.

In the keycode layer, each signwriting “basic symbol” is coded by a different
number called “internal name”. This basic symbol is first positionned geometrically
by “positionning elements” defining concentric circles and the respective
angular position of the basic symbol on these circles. The basic symbols can be
completed by additional information regarding the possible variations, such as
spatial rotations, required in order to form the complete symbol. These “additional
information elements”, like the basic symbols and the positionning elements, are
also coded by one or more numbers also called internal names. All these internal
names are linked to their respective meanings in a mapping table. Additional
internal names can be defined following the evolution of signwriting's standard.
Finally, “delimitors” are used to group basic symbols into complete signwriting
units.

In the unicode layer, another mapping table is used : these internal names are
mapped to unique unicode characters. One or more internal name can be mapped
to a unicode character, but each unicode character can only have one mapping.
This non-bijective approach is required to follow the unicode standard.

In the entry layer, signwriting symbols can be entered by different peripherals like
a keyboard or a mouse. The mouse driven graphical input system will be
completed by other entry modes in the future. Following the traditional key
mapping entry mode, a table maps internal names to the physical keys on the
keyboard. Multiple keyboard mapping tables allow different physical dispositions
for different countries or following user preferences.

The entry layer is separated from the rest of the system. It is only relevant to the
system by its dependancy on the unicode layer, required in order to output unicode
characters following the keycode layer specifications.

In the rendering layer, a unicode reconstruction engine like Gnome's Pango,
transform the flow of unicode characters into a graphical representation, i.e. a
complete signwriting symbol. It is not yet suitable to the display: elements are still
numbers (then called “external names”), and must be replaced by graphics. The
transformation is coded by a set of rules [3] describing the possible combination
and the outputs, like for unicode arabic and indian languages support.

In the font layer, a font subsystem like Gnome's Freetype/xft2, which support both
traditional bitmap fonts and vectorial fonts, takes care of the graphical
representation, replacing external names by their corresponding graphical
symbols.

Different fonts can of course be used.

Considering a symbol has been entered though the entry layer, it must then be
transcribed into a serie of unicode characters following these steps:
 - first, a delimitor is used to mark the beginning of the word and define a circle.
If this circle is preceded by another circle, it can embedded in that circle though
the comma delimitor. A dot delimitor put it outside that circle. A special type of
circle is used to define the contour of the face : it is the first circle by default.
 - then, basic symbols are positionned on the respective circles, with
positionning elements to define their angular positions followed by additional
information elements if these basic symbols need rotations, special fillings, etc.
 - delimitors are used to separate the basic symbols, the positionning elements
and the additional information elements. They are also used to mark the end of the
signwriting unit.

The internal names of these entities are never used – instead, unicode characters
are used, which allows existing software to process signwriting. These unicode
caracters are then mapped to the internal names, and the rendering layer
geometrically and spatially reconstruct a complete signwriting unit in the form of
external names. The font layer then replaces this information by the graphical
drawing of the complete unit.

Currently, the different layers are under work. They do not require the same amout
of work: the most complicated part is the definition of rules for the rendering layer
[4], the hardest task is drawing fonts, the most important is the keycode layer to
provide a quick replacement to SWML and the longest part is reserving enough
space in unicode for a correct signwriting implementation. The latter may
eventually be impossible, in which case “private” unicodes areas will have to be
used. This should only cause some minor changes in the unicode layer, but will
damage the portability benefits of using unicode.

This entire “text-like” layered approach makes a clear separation between the
various sub-systems used, providing a solid base upon which new sub-systems
can be built (for ex. in the entry layer, handwriting recognition) and any layer can
be upgraded (ex: adding additional vectorial fonts, supporting a new signwriting
standard) without requiring a full system redesign. Applications following Gnome's
API can immediately take advantage of signwriting support, which means a whole
desktop suite of software is made available for free to deaf-users. Moreover,
signwriting features (ex: writing from top to bottom) no longer need special
handling through specific applications, thanks to Gnome localisation support.

An additional advantage is the portability of the model. Support on the GNU/Linux
based PDAs requires no further work. Windows or MacOS support would require
minimal support in the entry layer and at some specific points in the font layer.
The upcoming support of Windows and MacOS by Gnome applications means
these steps could also simply be removed in the short term. Moreover, Signwriting
transcription in standardized unicode text means the text can be subject to
automated computer analysis, exchanged by researchers, etc. Possible evolutions
of the system include a statistical approach for auto completion and handwriting
recognition, and will certainly focus on the user interface and Gnome Accessibility.

References:

[1] Rosenberg, A. Writing Signed Language, “In Support of Adopting an ASL
Writing System”, Dept. of Linguistics, Univ. of Kansas, USA, 1999
http://www.signwriting.org/forums/research/rese010.html

[2] Antonio Carlos da Rocha Costa and Gracaliz Pereira Dimuro, “A SignWriting-
Based Approach to Sign Language Processing", Universidade Catholica de
Pelotas, Brasil, 2001
http://www.techfak.uni-bielefeld.de/ags/wbski/gw2001book/draftpapers/gw38.pdf

[3] Klaus Lagally, “ArabTe{X} : typesetting arabic with vowels and ligatures”, 1992
http://citeseer.nj.nec.com/rd/64325440%2C95192%2C1%2C0.25%
2CDownload/http://citeseer.nj.nec.com/cache/papers/cs/350/ftp:zSzzSzftp.informa
tik.uni-stuttgart.dezSzpubzSzlibraryzSzncstrl.ustuttgart_fizSzTR-1992-07zSzTR-
1992-07.pdf/lagally92arabtex.pdf

[4] Finite State Automata and Arabic Writing - Michel Fanton Certal-Inalco
http://acl.ldc.upenn.edu/W/W98/W98-1004.pdf

SWedit

XML encoding for basic
symbols positions with
hyperlinks to bitmap

files for graphical output

Provides a basis for
compatibility, does not

requires specific software
or constrains other

layers

Unicode layer

Entry layer

Rendering layer

Font layer

SignWriting

 - very large thesaurus
 - multiples non linear
combinations of basic symbols
 - graphical variations and spatial
arrangement of the basic symbols
may change the symbol meaning

 Unicode Support for Signwriting
Guylhem Aznar, Pr. Patrice Dalle

Laboratoire IRIT, Équipe TCI
{aznar;dalle}@irit.fr

New approach : multiple layers & unicode

Decomposing the problem in sub-problems allows separate improvements

Problems

 - oversized documents
 - no fonts, no scalability
 - requires specific software
 - mixes separate process
(encoding, entry UI, editor)
 - hard to share documents (.gif)

1. Unicode layer

BEGIN;,// \\ . * * . . ;,60° 120° 240°.
270° 10° . . 290°;, .. & 40°;END

This is a unicode sequence of internal names which
give the “deaf” symbol in ASL and FSL :

The rendering must be explained : there are 4 rings,
the first one being the face (grey) which contains the
eyesbrows and the smile (green). This first circle is
called by the leading comma. No attribute is needed.
Outside there is another circle called by a dot, etc.
This outside circle has two stars (pink) at 270° &10°

There are 4 categories of internal names:
 - Basic symbols: face is implicit

 - Positionning elements: angular rotations

 290° 10° 270° 120° 60° 240°
 - Additional information elements: rotation, fillings

 40°
 - Delimitors: ,=inside .=outside ;=next categorie

 BEGIN , ; . END

* * // \\

// \\
*

*

// \\
*

*

2. Entry layer

Currently under work.
Various options will coexist such
as mouse menus, keyboard, etc.
Effort put on drawing recognition.

4. Font layer

Final step:replaces external names by vectors or bitmaps of basic symbols

Conclusion : The FREU framework and a Unicode capable operating system allows any software on that
OS to fully use and support SignWriting, making documents easier to share, smaller and standard (.doc, .html ...)
An emphasis is put on drawing recognition and Zaurus support to have a SignWriting capable handheld.
For personal computers, the FREU framework first goal will be GNU/Linux support on the Gnome desktop.

F
R
E
U

3. Rendering lr.

Follows the instructions to
spatially combine the internal
names into external names
thus forming the final symbol

Reconstruction Symbol for “deaf”

