
Computer support for SignWriting written form of sign language

Guylhem Aznar, Patrice Dalle

TCI team, IRIT lab www.irit.fr
<lrec@externe.net>, <dalle@irit.fr>

Abstract
Signwriting's thesaurus is very large. It consists of 425 basic symbols, split in 60 groups from 10 categories. Each basic symbol can have 4
different representations, 6 different fillings and 16 different spatial rotations.

While signwriting is more and more used by the deaf
community, it currently lacks a complete and platform
neutral computer support to let signwriters share
documents regardless the applications and the underlying
operating system they may be using.
Based on previous research, various propositions have
been made, resulting in multiple incompatible systems.
The main problem currently is the lack of a consistent
basis upon which compatibility could be built : the most
advanced and used system, SWML [1], is multiplatform
thanks to Java but requires dedicated applications like the
previous attempts.
Moreover, the use of XML based representation requires
dozens of lines of code for each symbol, resulting in
oversized files which can not be parsed, used or read with
standard tools. XML linking to bitmap pictures for on-
screen representation prevents the integration of a real
font system, needed for a true portability, and cause
scalability problems.
Moreover, like previous systems, SWML still comes with
a complex user interface, a little easier to learn but slower,
symbols being entered via the mouse.
Even if this advanced approach helped the signwriter
community, replacing the manual insertion of GIF graphic
files for each symbol, at the moment, the signwriting
community must revert to screenshots and pictures to
ensure documents can be shared and read, resulting in
little reusability for both users and researchers, and low
computational possibilities worsened by the absence of
signwriting optical recognition software. Guylhem Aznar,
a first year medical resident and a PhD student in
Computer Science from Pr. Patrice Dalle TCI team in
IRIT (Toulouse, France), is proposing a unicode based
representation for Signwriting with a suite of free
software tools running on GNU/Linux but also supporting
non-free operating systems.
This approach based on unicode is putting a strong
emphasis on facilitating communication and compatibility
through a unicode reconstruction engine.
Usage and computer entry are also made simpler thanks to
different possibilities of human interaction : keyboard,
mouse and sensitive area (handwriting) support, which all
result in the same unicode-text output. This output can
then be shared, reused or studied easily.
The choice of unicode over XML facilitates integration in
existing software. The system works in layers : the entry
layer, the keycode layer, the unicode layer, the rendering

layer and the font layer. These layers are independent and
therefore easy to adapt and improve. In the keycode layer,
each signwriting “basic symbol” is coded by a different
number called “internal name”.
This basic symbol is first positionned geometrically by
“positionning elements” defining concentric circles and
the respective angular position of the basic symbol on
these circles. The basic symbols can be completed by
additional information regarding the possible variations,
such as spatial rotations, required in order to form the
complete symbol. These “additional information
elements”, like the basic symbols and the positionning
elements, are also coded by one or more numbers also
called internal names.
All these internal names are linked to their respective
meanings in a mapping table. Additional internal names
can be defined following the evolution of signwriting's
standard. Finally, “delimitors” are used to group basic
symbols into complete signwriting units. In the unicode
layer, another mapping table is used : these internal names
are mapped to unique unicode characters. One or more
internal name can be mapped to a unicode character, but
each unicode character can only have one mapping. This
non-bijective approach is required to follow the unicode
standard.
In the entry layer, signwriting symbols can be entered by
different peripherals like a keyboard or a mouse. The
mouse driven graphical input system will be completed by
other entry modes in the future. Following the traditional
key mapping entry mode, a table maps internal names to
the physical keys on the keyboard. Multiple keyboard
mapping tables allow different physical dispositions for
different countries or following user preferences.
The entry layer is separated from the rest of the system. It
is only relevant to the system by its dependancy on the
unicode layer, required in order to output Unicode
characters following the keycode layer specifications.
In the rendering layer, a unicode reconstruction engine
like Gnome's Pango, transform the flow of unicode
characters into a graphical representation, i.e. a complete
signwriting symbol. It is not yet suitable to the display:
elements are still numbers (then called “external
names”), and must be replaced by graphics.
The transformation is coded by a set of rules [3]
describing the possible combination and the outputs, like
for unicode arabic and indian languages support. In the
font layer, a font subsystem like Gnome's Freetype/xft2,

 109

which support both traditional bitmap fonts and vectorial
fonts, takes care of the graphical representation, replacing
external names by their corresponding graphical symbols.
Different fonts can of course be used.
Considering a symbol has been entered though the entry
layer, it must then be transcribed into a serie of unicode
characters following these steps:
- first, a positionning element is used to define a circle. If
this circle preceded by another circle before the initial
delimitor, it is embedded in that circle. A special
type of circle is used to define the contour of the face
- then, basic symbols are positionned on that circle, with
positionning elements to define their angular position
followed by additional information elements if these basic
symbols need rotations, special fillings, etc.
- finally, a delimitor is used to mark the end of the
signwriting unit.
The internal names of these entities are never used –
instead, unicode characters are used, which allows
existing software to process signwriting. These Unicode
caracters are then mapped to the internal names, and the
rendering layer geometrically and spatially reconstruct a
complete signwriting unit in the form of external names.
The font layer then replaces this information by the
graphical drawing of the complete unit.
Currently, the different layers are under work. They do
not require the same amout of work: the most complicated
part is the definition of rules for the rendering layer [4],
the hardest task is drawing fonts, the most important is the
keycode layer to provide a quick replacement to SWML
and the longest part is reserving enough space in unicode
for a correct signwriting implementation. The latter may
eventually be impossible, in which case “private”
unicodes areas will have to be used. This should only
cause some minor changes in the unicode layer, but will
damage the portability benefits of using unicode.
This entire “text-like” layered approach makes a clear
separation between the various sub-systems used,
providing a solid base upon which new sub-systems can
be built (for ex. in the entry layer, handwriting
recognition) and any layer can be upgraded (ex: adding
additional vectorial fonts, supporting a new signwriting
standard) without requiring a full system redesign.
Applications following Gnome's API can immediately
take advantage of signwriting support, which means a
whole desktop suite of software is made available for free
to deaf-users. Moreover, signwriting features (ex: writing
from top to bottom) no longer need special handling
through specific applications, thanks to Gnome
localisation support.
An additional advantage is the portability of the model.
Support on the GNU/Linux based PDAs requires no
further work. Windows or MacOS support would require
minimal support in the entry layer and at some specific
points in the font layer.
The upcoming support of Windows and MacOS by
Gnome applications means these steps could also simply
be removed in the short term. Moreover, Signwriting
transcription in standardized unicode text means the text

can be subject to automated computer analysis, exchanged
by researchers, etc. Possible evolutions of the system
include a statistical approach for auto completion and
handwriting recognition, and will certainly focus on the
user interface with the design of specific Gnome
Accessibility features.

1. References:
[1] Rosenberg, A. Writing Signed Language, “In Support

of Adopting an ASL Writing System”, Dept. of
Linguistics, Univ. of Kansas, USA, 1999
http://www.signwriting.org/forums/research/rese010.h
tml

[2] Antonio Carlos da Rocha Costa and Gracaliz Pereira
Dimuro, “A SignWriting- Based Approach to Sign
Language Processing", Universidade Catholica de
Pelotas, Brasil, 2001
http://www.techfak.unibielefeld.de/ags/wbski/gw2001
book/draftpapers/gw38.pdf

[3] Klaus Lagally, “ArabTe{X} : typesetting arabic with
vowels and ligatures”, 1992
http://citeseer.nj.nec.com/rd/64325440%2C95192%2
C1%2C0.25%
2CDownload/http://citeseer.nj.nec.com/cache/papers/c
s/350/ftp:zSzzSzftp.informatik.unistuttgart.dezSzpubz
SzlibraryzSzncstrl.ustuttgart_fizSzTR-1992-
07zSzTR-1992-07.pdf/lagally92arabtex.pdf

[4] Finite State Automata and Arabic Writing - Michel
Fanton Certal-Inalco
http://acl.ldc.upenn.edu/W/W98/W98-1004.pdf

 110

SWedit

XML encoding for basic
symbols positions with
hyperlinks to bitmap

files for graphical output

Provides a basis for
compatibility, does not

requires specific software
or constrains other

layers

Unicode layer

Entry layer

Rendering layer

Font layer

SignWriting

 - very large thesaurus
 - multiples non linear
combinations of basic symbols
 - graphical variations and spatial
arrangement of the basic symbols
may change the symbol meaning

 Unicode Support for Signwriting
Guylhem Aznar, Pr. Patrice Dalle

Laboratoire IRIT, Équipe TCI
{aznar;dalle}@irit.fr

New approach : multiple layers & unicode

Decomposing the problem in sub-problems allows separate improvements

Problems

 - oversized documents
 - no fonts, no scalability
 - requires specific software
 - mixes separate process
(encoding, entry UI, editor)
 - hard to share documents (.gif)

1. Unicode layer

BEGIN;,// \\ . * * . . ;,60° 120° 240°.
270° 10° . . 290°;, .. & 40°;END

This is a unicode sequence of internal names which
give the “deaf” symbol in ASL and FSL :

The rendering must be explained : there are 4 rings,
the first one being the face (grey) which contains the
eyesbrows and the smile (green). This first circle is
called by the leading comma. No attribute is needed.
Outside there is another circle called by a dot, etc.
This outside circle has two stars (pink) at 270° &10°

There are 4 categories of internal names:
 - Basic symbols: face is implicit

 - Positionning elements: angular rotations

 290° 10° 270° 120° 60° 240°
 - Additional information elements: rotation, fillings

 40°
 - Delimitors: ,=inside .=outside ;=next categorie

 BEGIN , ; . END

* * // \\

// \\
*

*

// \\
*

*

2. Entry layer

Currently under work.
Various options will coexist such
as mouse menus, keyboard, etc.
Effort put on drawing recognition.

4. Font layer

Final step:replaces external names by vectors or bitmaps of basic symbols

Conclusion : The FREU framework and a Unicode capable operating system allows any software on that
OS to fully use and support SignWriting, making documents easier to share, smaller and standard (.doc, .html ...)
An emphasis is put on drawing recognition and Zaurus support to have a SignWriting capable handheld.
For personal computers, the FREU framework first goal will be GNU/Linux support on the Gnome desktop.

F
R
E
U

3. Rendering lr.

Follows the instructions to
spatially combine the internal
names into external names
thus forming the final symbol

Reconstruction Symbol for “deaf”

	Antoniosearching-swml-final.pdf
	Introduction
	Sign languages and the SignWriting system
	SignWriting and SWML
	Matching Written Signs
	Basic Geometric Features of Symbols and Signs
	The Sign Similarity Relation
	Search Procedures for Sign Texts

	Conclusion
	References

	A practical writing,2[2].pdf
	A Practical Writing System for Sign Languages
	
	Angel Herrero
	Abstract

	China yn e (mo) zy - zu
	bilinguismo so’ami ei mau wu gre
	(bilingualism)
	
	Acknowledgements

	References

	Historical_Dictionary_Proyect_final version.pdf
	Rubén Nogueira & Jose M. Martínez
	Abstract

	Several psycholinguistic studies (Bellugi, Klima & Siple, 1975) have indicated the natural acquisition of these languages, as well as the various stages or phases of development that deaf children must go through when learning to sign; these stages are
	
	The word ‘mute’ appears in almost every one of th

	The Historical Dictionary Project
	
	
	The project introduced here began when we were given the opportunity of offering this text, with its translation into Sign Language, on the Internet, through the Biblioteca Virtual Miguel de Cervantes (Miguel de Cervantes Virtual Library), an ambitious

	Writing Lessons
	
	Conclusions
	Acknowledgements

	ASL University, [online], U.S.A., URL: http://www.lifeprint.com/asl101/index.htm [Cited: 30/01/2004]
	Handspeak, [online], U.S.A., URL: http://www.handspeak.com [Cited: 30/01/2004]

