
SIGNWRITER

Richard Gleaves
Valerie Sutton

Deaf Action Committee for SignWriting
Center For Sutton Movement Writing

La Jolla, California, USA
rgleaves@signwriting.org
sutton@signwriting.org

Abstract

This paper reviews the design history of SignWriter, a
word processor for the SignWriting system. While the
primary goal of SignWriter was simply to create a word
processor for SignWriting, its development and
subsequent use had several beneficial effects on the
SignWriting system. Various design aspects of
SignWriter are considered in the context of current
computing technologies and sign processing development
efforts.

Background

The SignWriting system [Sutton04] was conceived,
developed, and used for many years as a hand-written
notation. In particular, its use predated the introduction of
low-cost personal computers.

In 1984 Emerson and Stern Associates, a small
educational research and development firm, received a
grant to develop a word processor for SignWriting. The
resulting software, which operated on an Apple II
computer, supported only a minor subset of the
SignWriting system and was more of a demonstration
than a useful tool: it was not subsequently used, and
received no further development. The application was
notable for displaying the symbols in a virtual "picture
frame" around a central editing area, with symbols
selected for entry by moving a cursor around the frame
until the desired symbol was reached.

Emerson and Stern's software design implied that
SignWriting was too complex for the personal computers
of the time. Interestingly, their response was to devise an
entirely different writing system named SignFont
[Newkirk87], which traded computational simplicity - it
was designed as a standard Macintosh font - for
notational obscurity. SignFont's subsequent nonuse
suggests that this design tradeoff was unsuccessful.

SignWriter Apple

It was in this context that SignWriter was conceived in
1986. The intended use for SignWriter was in education
and the hardware platform was once again the Apple II,
which at the time was an established standard for
personal computing. The design goal was to implement
the full SignWriting system in a simple but complete and
usable word processor.

This more ambitious goal could be attempted on the same
hardware because as a former member of the UCSD
Pascal project, Richard Gleaves had several years of
experience developing system software for the Apple II,
and knew how to program in assembly language and
make full use of the Apple's 128KB memory. In addition
Gleaves’ Pascal project colleague Mark Allen provided
some high-performance graphics routines that he had
developed for writing arcade-style games on the Apple II.

Much of the design effort in SignWriter was spent on two
issues:

 … Developing a memory-efficient encoding for
SignWriting text
 … Devising user interface mechanisms for efficiently
typing symbols

SignWriting symbols were encoded using a variable-
length byte-code system that was introduced in UCSD
Pascal p-code [Bowles78] and later adopted for use in
Java object code. The SignWriter graphics engine
interpreted the byte codes as instructions for drawing
symbols on the screen in specific locations and
orientations.

Typing was chosen as the input mode for two reasons.
First, while mice were available for the Apple II they
were an optional add-on and therefore most Apple IIs did
not have them. Second, the SignWriting system was
receiving criticism at the time for allegedly being a form

 7

of illustration rather than a true writing system. Therefore
an efficient typing mechanism would cause SignWriter to
serve as implicit proof that SignWriting was indeed a
form of writing.

It was evident that SignWriting's complex symbol set
would prevent it from being typed as efficiently as the
Roman alphabet on a standard keyboard. However, the
design that evolved - which involved the context-
sensitive dynamic redefinition of the keyboard keys -
yielded a valuable tradeoff of efficiency for learnability.
The key boxes displayed on the screen highlighted the
natural categories of the SignWriting symbols in a
manner that allowed the typing mechanism to serve as an
implicit learning tool: a crucial property given the symbol
set complexity and the application's intended audience.
See Figures 1, 2 and 3 from the SignWriter-At-A-Glance
Instruction Manual.

The SignWriting symbol images were created by Valerie
Sutton using the SignWriter symbol editor program. In
addition she defined the mapping of SignWriting symbols
to the keyboard keys. As with the key boxes, this
mapping emphasized learnability by grouping symbols
according to their natural categories. Conversely, the
mapping of the key box keys and symbol attribute keys
(Arrow, Cursor, Mirror, Size, and Rotate) was determined
strictly by typing efficiency.

SignWriter's Find and Replace commands were
implemented (at significant expense in memory) both to
establish SignWriter as a complete word processor and
again to demonstrate SignWriting's status as a true
writing system. Unfortunately the search algorithm did
not take into account the relative positioning of symbols
within a sign, thus making the search feature itself more
of a demonstration than a useful tool.

Because SignWriter was developed as a stand-alone
application, it was free to possess an application-specific
user interface. The interface design was influenced by
Tufte's principle of graphical minimalism [Tufte83]:
namely, every pixel that was not part of a SignWriting
symbol existed onscreen only because it was functionally
necessary. While this design approach may seem austere
given today's large color displays, it made for a simple
and easy-to-use interface on the Apple II, which had a
screen resolution of only 560 by 192 pixels.

The major drawbacks to SignWriter's interface design
were the inefficient cursor movement commands and the
need for a keyboard card showing the assignment of
SignWriting symbols and commands to the keys.

The Apple II version of SignWriter supported the full
SignWriting system as it was defined at the time (palm
orientation had not yet been introduced). The software
was quite usable, but was never widely used because
experienced SignWriting users had to type in each
occurrence of each sign, while for new users typing
symbols was relatively inefficient and – in the absence of
a system for teaching typing – posed a significant
learning curve.

SignWriter DOS

By the late 1980s the IBM PC had replaced the Apple II
as the personal computer of choice. SignWriter was
ported to the IBM PC with programming assistance from
Barry Demchak. We chose the CGA display mode
because at the time it was the graphics display mode
supported by the most PC models, and because its screen
resolution of 640 by 200 pixels was close enough to the
Apple to simplify porting the existing symbol graphics to
the PC (which is why the SignWriter symbols are so
jagged).

The extra memory available on the IBM PC allowed
SignWriter to be expanded with additional symbols, a
sign dictionary, and support for multiple countries and
languages. These features (along with software
distribution on the Internet) had a significant impact on
SignWriter use, as researchers began using SignWriter to
create and publish dictionaries for various signed
languages. This is the version of SignWriter that is in
common use today.

Effects on SignWriting

The purpose of SignWriter was simply to provide a word
processor for the SignWriting system. However, its
development and subsequent use had several beneficial
effects on SignWriting:

 … SignWriter offered a concrete proof of SignWriting's
status as a systematic notation rather than an ad hoc form
of illustration. This notion influenced the subsequent
design of the software.
 … The typing mechanism served as an implicit
interactive system for learning the SignWriter symbols
(an important achievement given the complexity of the
symbol set).
 … The SignWriter symbol editor was withheld from
distribution to ensure the controlled development of the

 8

SignWriting system as it evolved to support more and
more signed languages.
 … The constraints of computer implementation exerted a
positive influence on the subsequent evolution of the
SignWriting system.
 … The SignWriter software itself served as an efficient
means of distributing the SignWriting system, and
established a de facto standard for data exchange (an
effect greatly amplified by the introduction of the
Internet).

Conclusion

Beyond its immediate value as a tool for practical sign
processing, SignWriter offers a number of lessons for
current and future developers of sign processing software.

The most important is the need to standardize a user
interface mechanism for symbol input; just as the symbol
set is being standardized across all sign processing
programs that use SignWriting, so must symbol entry.
Such a standard should be centered on typing, with
mouse input as an alternative rather than a replacement.
Compelling pedagogical and linguistic reasons exist for
providing efficient input mechanisms at the level of
symbols rather than signs; while such mechanisms need
not supplant text entry at the sign level, the reverse
equally holds true.

The diagrams in this paper illustrate SignWriter’s typing-
based symbol input system as an example of how future
typing-centered systems could be designed.

With regards to efficiency, Valerie Sutton has learned to
type SignWriting almost as efficiently as English. This
suggests that with the proper training (an accepted norm
for typing) and appropriate hardware (e.g., a notebook
computer with an integrated touchpad for cursor control

and fine symbol positioning), typing-centered symbol
input may well prove superior to any mouse-based
systems.

Finally, SignWriter demonstrated that with the
appropriate software architecture a true word processor
could be implemented for SignWriting given limited
resources for memory, processing power, and display
resolution. This in turn suggests opportunities for
developing useful sign processing software on the
emerging handheld computing platforms such as PDAs
and cell phones.

References

[Bowles78]
Bowles, Kenneth L., "UCSD Pascal", Byte. 46 (May)

[Newkirk87]
Newkirk, Don, "SignFont Handbook", San Diego:
Emerson and Stern Associates (1987)

[Tufte83]
Tufte, Edward R., "The Visual Display of Quantitative
Information", Graphics Press (1983)

[Sutton93]
Sutton, Valerie. SignWriter-At-A-Glance Instruction
Manual, SignWriter Computer Program Notebook,
Deaf Action Committee For SignWriting (1993)

[Sutton04]
Sutton, Valerie. SignWriting Site. www.signwriting.org

 9

 Figure 1: A page from the SignWriter-At-A-Glance-Manual. Symbol groups are under each key.

 10

Figure 2: A page from the SignWriter-At-A-Glance-Manual. Symbol categories are placed in rows of keys.

 11

Figure 3: A page from the SignWriter-At-A-Glance-Manual. 17 countries with 17 fingerspelling keyboards.

 12

	Antoniosearching-swml-final.pdf
	Introduction
	Sign languages and the SignWriting system
	SignWriting and SWML
	Matching Written Signs
	Basic Geometric Features of Symbols and Signs
	The Sign Similarity Relation
	Search Procedures for Sign Texts

	Conclusion
	References

	A practical writing,2[2].pdf
	A Practical Writing System for Sign Languages
	
	Angel Herrero
	Abstract

	China yn e (mo) zy - zu
	bilinguismo so’ami ei mau wu gre
	(bilingualism)
	
	Acknowledgements

	References

	Historical_Dictionary_Proyect_final version.pdf
	Rubén Nogueira & Jose M. Martínez
	Abstract

	Several psycholinguistic studies (Bellugi, Klima & Siple, 1975) have indicated the natural acquisition of these languages, as well as the various stages or phases of development that deaf children must go through when learning to sign; these stages are
	
	The word ‘mute’ appears in almost every one of th

	The Historical Dictionary Project
	
	
	The project introduced here began when we were given the opportunity of offering this text, with its translation into Sign Language, on the Internet, through the Biblioteca Virtual Miguel de Cervantes (Miguel de Cervantes Virtual Library), an ambitious

	Writing Lessons
	
	Conclusions
	Acknowledgements

	ASL University, [online], U.S.A., URL: http://www.lifeprint.com/asl101/index.htm [Cited: 30/01/2004]
	Handspeak, [online], U.S.A., URL: http://www.handspeak.com [Cited: 30/01/2004]

